

Knowledge about direct climate change effects on the water regime and water temperature of the Rhine

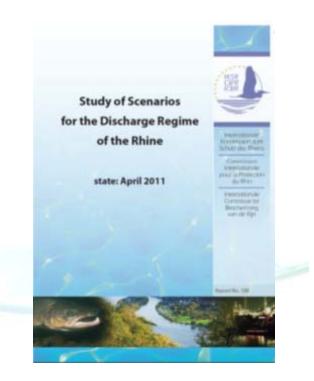
1st Rhine-Mekong Symposium
"Climate change and its influence on water and related sectors"
8-9 May 2014, Koblenz, Germany

Adrian Schmid-Breton ICPR

Studies about the effects of climate change:

•Summary synthesis of available literature (ICPR– Publication 2009 – No. 174)

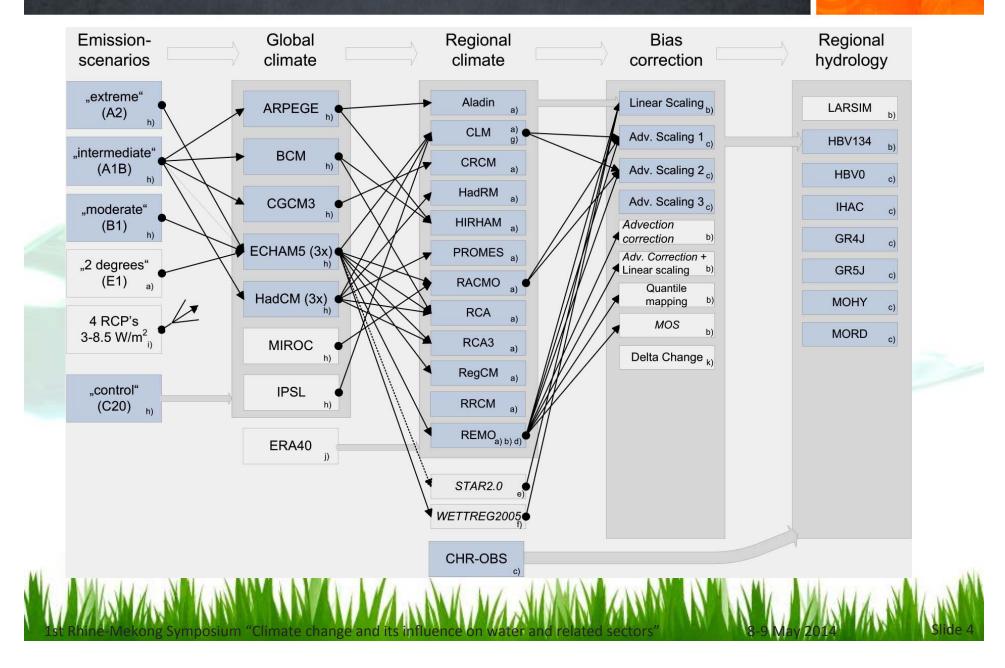
•Developing hydrological scenarios with the help of water discharge models: "Study of Scenarios for the Discharge Regime of the Rhine" (ICPR-Publication 2011 - No. 188)


"Study of Scenarios for the Discharge Regime of the Rhine"

Based mostly on the KHR report "RheinBlick2050 (Görgen et al. (2010)"

First consistent study for the whole Rhine catchment

Different hydrometeo. parameters


20th cent.: 1961-1990 (so-called control run) 21st century: projection of the "near future": 2021-2050, projection of the "remote future": 2071-2100

Focus on ranges of change

BUT: almost no data/knowledge on the evolution of water temperatures in the future

"Study of Scenarios for the Discharge Regime of the Rhine": methodology

"Study of Scenarios for the Discharge Regime of the Rhine": methodology

EG KLIMA – First indications Signals of climate change during the 21st century for the near (- 2050) and remote future (- 2100) Qualitative evaluation: Bandwidth of change in % for different sub-basins

	colour	Meaning	Explanation	
	Orange	decreasing tendency	A great majority (~ 80%) of projections indicates a decreasing tendency	
	Grey	No tendency	 Approx. the same number of tendencies shows an increase resp. decrease A great majority (~ 80 %) of projections indicates an increasing tendency 	
	Light blue	Increasing tendency		
55	White	No statement possible	Spread of values ≥50% or methodical deficits	

Projections for the 21st century: Example for the <u>mean discharge (MQ)</u>

Parameter	Gauge	Corridors of scenarios				
		Change in % Near future		nge in % ote future		
MQ	Basel	-10% to +5%	-25% to -10%			
Hydrological	Maxau	-10% to +5%	-25% to -10%			
summer-	Worms	-10% to +5%	-25% to -10%			
half year	Kaub	-10% to +10%		-25% to -10%		
(May-Oct)	Mean discharge			-25% to -10%		
	"Near" future:			-25% to -10%		
				-20% to +10%		
				-25% to -5%		
MQ				+5% to +25%		
Hydrological	Winter 0 to	+20%		+5% to +25%		
winter-	Worms	0% to +20%		+5% to +25%		
half year	Kaub	0% to +20%		+5% to +25%		
(Nov-Apr)	Cologne	0% to +15%		+5% to +25%		
Å.	Lobith	0% to +15%		+5% to +25%		
A MILLING MALLINAN	Raunheim (Main)	0% to +25%		+15% to +40%		
	Trier (Moselle)	0% to +20%		+10% to +30%		

"Study of Scenarios for the Discharge Regime of the Rhine": main results

Climate projections (until 2050 and 2100) show:

- •Rise of winter/summer air temperatures
- •Precipitation: wetter winters, drier summers

Possible consequences:

- •Winter: increase of runoff (floods)
- •Summer: decrease of runoff (low water)

"Study of Scenarios for the Discharge Regime of the Rhine": main results

Air temperature Summer +1 to+1,5°C Winter +1,5 to+2°C **MQ (average run-off)** Summer +/- 10% Winter 0 to +20%

Flood run-off MHQ -5 to 25% HQfrequent -5 to +15%

Low water run-off: Summer +/- 10% Winter 0 to +15% Knowledge basis about climate change effects: water temperature – observed changes

Report no 209 (2013):

Development of Rhine water temperatures based on validated temperature measurements between 1978 and 2011

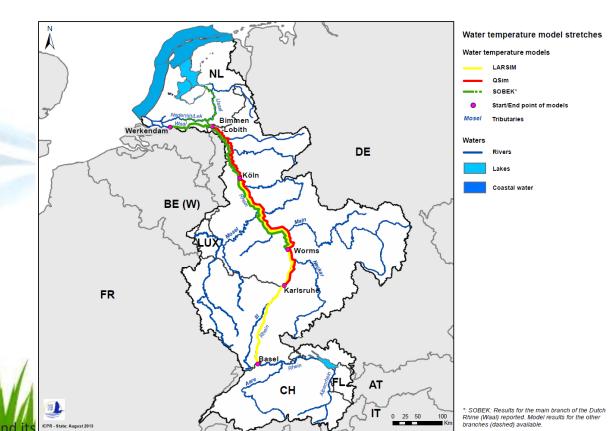
→ describes the developments of Rhine water temperature during the past 30 years.

Knowledge basis about climate change effects: water temperature – observed changes: results

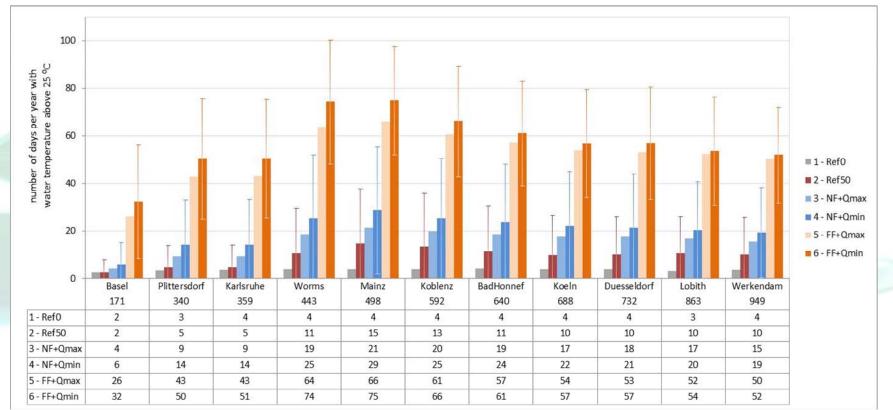
- Clear correlation between water temperature and air temperatures evolution.
- On average, between 1978 and 2011, water temperatures rise by about 1°C to 1.5°C.
- Not continuous, rise in 1987-1989 (North Atlantic Oscillation)
- Regional scale: thermal discharges from power plants further contribute to an increase beyond the natural water temperature.
- Past decade: number of days with water temperatures in over 22°C or 25°C considerably increased compared to the two preceding decades.

Water temperature: Long-term development/prognoses

- July 2012: expert group STEMP "temperature model prognoses" commissioned to draft an assessment of the future development of Rhine water temperatures (from Basel to Rhine delta)
- Assessment based on climate scenarios from RheinBlick2050/ICPR Climate report.


→ Reports no. 213./214:

Estimation of the effects of climate change scenarios on future Rhine water temperature development


Water temperature: Long-term development/prognoses (methodology)

- Uses reliable deterministic simulation models to predict the combined effect of expected changes in meteorology and discharge on the future water tempera-ture.
- Three models used (after validation/ calibration)

Water temperature - Long-term development: Main results

Average number of days per year with a water temperature of more than 25°C

Water temperature - Long-term development: Main results

Water temperature (summer/August)
Near future + 1,5 °C
Remote future + 3,5 °C
(higher increase during low water)

In the far future the days exceeding 25°C will increase strongly.

Effects of heat input have been assessed, can lead (regionally) to an additional + 1°C

