The Benefit of a Limited-Area Ensemble Prediction System with Respect to flood forecasting

André Walser
Mathias Rotach
MeteoSwiss
Resolution of EPS for weather forecasts

Zoom into Alpine region:

Typical global EPS ($\Delta x \sim 80$ km)

Limited-area EPS ($\Delta x \sim 10$ km)
Outline

- Current setup of COSMO-LEPS suite
- Results from “August 2005 event”
- Objective verification
- Decision-making based on cost-loss analysis
- Summary
COSMO-LEPS

- Developed by ARPA-SIM, Bologna, Italy
- Focus: forecast days 3-5
- Running since November 2002, fully operational since November 2005
Current COSMO-LEPS setup

- Model: LM
- 16 members (since 7 Feb 06)
- 132-h forecasts
- Area: Southern and Central Europe
- Grid-spacing 10 km, 40 levels
- Platform: IBM-Cluster at ECMWF
- Based on ECMWF EPS:
COSMO-LEPS strategy

102 ECMWF Ensemble Member („Super-Ensemble“) with $\Delta x \sim 50$ km
COSMO-LEPS strategy

Grouping into 16 groups and …
COSMO-LEPS strategy

... identifying a representative member for each group

16 LM simulations with different weights according to the group population
COSMO-LEPS output

16 scenarios

Probabilistic model output (PMO) from the ensemble for defined thresholds

Deterministic model output (DMO) from each of the 16 LM runs

Input for hydrologic EPS

Talk Verbunt et al., *Poster Jaun et al.*

COSMO-LEPS probability forecast: 24h sum of snow
3 Mar 2006 12UTC, t+4(18-42), VT: Sunday 5 Mar 2006 06UTC

- > 1cm/24h
- > 5cm/24h
- > 10cm/24h
- > 20cm/24h
COSMO-LEPS products (2): Meteograms

- 5-day weather predictions
- for any location
- 3 hourly resolution
- from COSMO-LEPS and deterministic forecast of MeteoSwiss (aLMo)
COSMO-LEPS Ensemble Forecast: Max. wind gusts at 10m [km/h] (in last 24h)
27 Mar 2006 12UTC, t+(84-108), VT: Saturday 1 Apr 2006 00UTC
Case study: Swiss Flood event in August 05

Photos: Tages-Anzeiger
Synoptic overview: 22 August 2005

Temperature 850 hPa and geopotential 500 hPa:
Observed total precipitation over 3 days

Niederschlag 72h–Summe (mm) : 20.8. – 23.8.2005 06 - 06 UTC

Precipitation sum locally over 300 mm!
COSMO-LEPS forecast for 72h precipitation

COSMO-LEPS probability forecast: 72h sum of total precipitation
19 Aug 2005 12UTC, t+(18-90), VT: Tuesday 23 Aug 2005 06UTC
Probability precipitation $> 100\text{mm}/72\text{h}$

Precipitation observed
COSMO-LEPS forecast for 72-h precipitation
Probabilistic verification: LEPS vs. ECMWF

COSMO stations and verification grid:

C. Marsigli, ARPA Bologna
Verification of precipitation SON 2004 (1)

Average values
boxes 1.5x1.5 deg

COSMO-LEPS
10-MEMBER EPS

C. Marsigli, ARPA Bologna
Verification of precipitation SON 2004 (2)

Maximum values
boxes 1.5x1.5 deg

C. Marsigli, ARPA Bologna
Weather risk management

Critical amount

Ensemble forecast (e.g. COSMO-LEPS)

Precipitation [mm/24 h]

0 20 40 60 80 100 120 140 160

Ensemble forecasts provide a multitude of decision criteria (probability thresholds).

Should preventive action be taken?

No general answer: Optimum decision is user-dependent!
Decision-making based on cost-loss analysis

(Zhu et al. 2002)

- Typically $C \leq M < L$

Forecast users have to know their C and Lp to optimize the decisions.
Economic value

\[V = \frac{E_{\text{climate}} - E_{\text{forecast}}}{E_{\text{climate}} - E_{\text{perfect}}} \]

- \(E_{\text{climate}} \): expected cost using climatology
- \(E_{\text{forecast}} \): expected cost using forecast system
- \(E_{\text{perfect}} \): expected cost if forecast system is perfect

\(V = 1 \): Perfect system

\(V < 0 \): Climatology more useful

\[\text{if } Lu = 0 : \]
\[E_{\text{climate}} = \text{Min} \left((h + m) L_p , (h + m + f + c) C \right) \]
\[E_{\text{forecast}} = (h + f) C + m L_p \]
\[E_{\text{perfect}} = (h + m) C \]
Economic value for different users: example

Every user has its specific C/Lp ratio
Economic value for different users: example

The optimum value from the system will be achieved if each user acts at the best probability threshold for his particular C/Lp.
Economic value for different users: example

The higher C/Lp, the higher the decision level which gives the maximum economic value.
Economic value of COSMO-LEPS vs. ECMWF EPS

Example for 24-h precip > 30 mm of 90th percentile within 1.5 x 1.5 degree box and for lead-time +66h:

User should always take action

User should use COSMO-LEPS

User should never take action

User should use ECMWF system

C. Marsigli, ARPA Bologna
Summary

- COSMO-LEPS helps to improve forecasts for extreme events.

- However, results from objective verifications are in general not very satisfying so far.

- Improvements in design of LEPSs and NWP model important.

- Use of user-dependent decision levels to optimize benefit of EPSs.
The end

Questions?